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Abstract—A novel approach for achieving fast and accurate simulation tools. However, EM simulation methods, such as

computer-aided design (CAD) of microwave circuits is described. those in [4], take tremendous computational efforts and are
The proposed approach enhances the ability to utilize electro- ¢ practical for interactive CAD.

magnetic (EM) analysis techniques in an interactive CAD envi- . . . . .
ronment through the application of neurocomputing technology. In this paper, a methodology is described in which a

Specifically, a multilayer perceptron neural network (MLPNN) ~Multilayer perceptron ne_ur_al _network (M_LP’\_'N) is impl_e-
is implemented to model monolithic microwave integrated circuit mented to model monolithic integrated circuit (IC) passive

(MMIC) passive elements using the element's physical param- elements to nearly the same degree of accuracy as that afforded
eters. The strength of this approach is that only a minimum [y EM simulation. Experiments are discussed in which the
number of EM simulations of these passive elements are required s-parameters of microstrip square spiral inductors are modeled.

to capture critical input—output relationships. The technique used . . ;
to describe the data set required for model development is Inputs to the neural network model are the physical dimensions

based on a statistical design of experiment (DoE) approach. Data Of the inductor and the desired frequency. The outputs are
generated from EM simulations are used to train the MLPNN the s-parameters for that inductor at the respective frequency
which, once trained, is capable of modeling passive elements notpoints. A statistical design of experiment (DoE) approach was
included in the training set. The results presented indicate thatthe {3ken when generating the training and test data to ensure

MLPNN can predict the s-parameters of these passive elements : .
to nearly the same degree of accuracy as that afforded by EM adequate parameter coverage. Once trained, the computation

simulation. The correlations between the MLPNN-computed and ime Of the modeled parameters is negligible, which makes
EM-simulated results are greater than 0.98 for each modeled the MLPNN models suitable for interactive CAD applications.

parameter. Furthermore, the MLPNN'’s ability to generalize may elim-
Index Terms—CAD, electromagnetic, microwave, neural net- ir.]ate the need to always perform such time-consuming EM
works. simulations.
To demonstrate the application of this technique, three
experiments were conducted. In each experiment, an MLPNN
. INTRODUCTION was trained to predict the parameters of MMIC square spiral
OR MMIC DESIGN, the effectiveness of moderninductors in 1-GHz steps. &-band (4-8 GHz)X-band (8-12
computer-aided design (CAD) methods relies on accurdéz), andC-X band (4-12 GHz) MLPNN inductor model
models of active and passive circuit elements. As circuitas developed. In each experiment, the MLPNN model's
densities and operating frequencies increase, the accurpeyformance remained nearly constant. Therefore, only the
of conventional modeling techniqgues become questionablesults from the most complex experiment, t6e-X-band
Typical circuit simulator supplied passive element models doodel, are provided. The-parameters used to train and test
not accurately account for the parasitic and coupling effedtse MLPNN were obtained from full-wave EM simulations.
which occur at microwave/millimeter-wave frequencies [1JAlso, the MLPNN’s ability to generalize the-parameters
To remedy this situation, libraries of passive components haok inductors outside the training set of each example is
been developed by actually fabricating, testing, and storing tlemonstrated.
results of hundreds of elements in a table [2]. This approach isln Section II, the MLPNN architecture and the MLPNN
problematic since the libraries are process dependent, costlyrtodeling methodology is presented. Section Ill describes the
create, and limits the designer to a discrete set of componemeE approach for creating the comprehensive set of training
Table look-up techniques, while very fast, suffer from the larggata for the MLPNN inductor models described in Section IV.
memory requirements associated with the size of the table Finally, Section V presents the modeling results and Section
More recently, electromagnetic (EM) analysis tools hawél discusses some observations and issues associated with the
become commercially available which accurately model pasplementation of the MLPNN models.
sive structures into the millimeter-wave frequency range [3].
EM simulation effectively models passive element dispersion || MULTILAYER PERCEPTRONNEURAL NETWORK

and mutual coupling effects ignored by traditional circuit . .
Neurocomputing technologies have emerged as powerful

_ _ _ modeling techniques. The class of neural network and/or
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Input Layer Hidden Layer Output Layer B. MLPNN Model Development

1) Data Preprocessing and TrainingModel development
starts with selecting, analyzing, and manipulating data. The
data to be mapped must be arranged into input—output pairs.
Also, the modeler must consider how to divide the data
into separate training and test files. The input—output pairs
in the training file are used for model development while
the test file is used for model validation. In this research a
fractional-factorial experimental design was used to generate
the test and training data files. This approach is described in
detail in Section Ill. The data in these files are normalized
by scaling them between the range ofl to 1. This helps
prevent the activation values from becoming too large and the
occurrence of neuron saturation during training.

The MLPNN models are developed using supervised train-
ing. The network learns the mappings directly from instances
Fig. 1. MLPNN feedforward architecture. of the input—output pairs in the training file. Training is
facilitated through the application of the BP training algorithm.

h . . in th ) ) The BP algorithm, a gradient search technique, calculates the
The MLPNN is trained in the supervised mode using tGeight adjustment using the generalized delta learning rule.

error back-propagation (BP) algorithm. These networks cag,"oach pair of input—output vectors in the training set, a
In tlhgory,hperform any complex nonlinear mappings [5], [6]yeignt adjustment is calculated to reduce the error between
Relationships are mapped between input and output dgig \j pNN computed and the desired response. A thorough

through an adaptive weight connection matrix [7]. discussion of the generalized delta learning rule and the error
Feedforward neural networks have recently been appllg training algorithm is presented in [13].

in such areas as microwave circuit anaIyS|s and optlmlzatlonz) Evaluation/Validation: The goal, during training, is for

[8], microstrip circuit_ design_ [9], and deyice c_haracterizatio[he network to learn the complex mapping present in the
for very large scale integration (VLSI) simulation [10]. MOr&»ining data and to produce accurate predictions or general-

recently, the MLPNN has demonstrated, with good accuraGyations. Generalization is the network’s ability to interpolate

the ability to model GaAs MESFET process and devicg oyiranolate with data not included in the training set.

characteristics in the forward direction [11] and to predict In this work, the testing technique used to evaluate the
MESFET parametric yield [12]. MLPNN's generalization capability is called cross validation
[5]. Cross validation is a statistical technique in which the
A. Architecture and MLPNN Considerations training sample and a validation sample are selected from the
A comprehensive presentation of the MLPNN is presenté@me population. The MLPNN is trained using the training
in [13]; however, for convenience a brief discussion is pre¢ample. When the training error stops decreasing by an ap-
vided here. The MLPNN has a multilayer feedforward amreciable amount, the training is halted. The generalization
chitecture, as shown in Fig. 1. It is composed of layegapability of the network is then tested using the validation
of computing nodes termed neurons. Each neuron formssample.
weighted sum of its inputs which is passed through a nonlinearDuring training, the algorithm cycles through the data re-

activation function. The nonlinear activation function usefeatedly, changing the weight values to improve performance.
in this research is the sigmoidal functiorf(net), and is After each pass through the training data, network performance

Xt
Fixed input

h
Fixed hidden input

expressed as is measured by calculating the rms normalized error given by
2 1 P K
f(net) = T o 1 1) Erms = Pz Z Z (s, — 0pk)2 3)
p=1 k=1

wherenet, is the weighted sum of the inputs aAdletermines . , .

the gain of the neuron. yvhereP is the number of patterns in the training set akid
The input vector feeds each of the hidden layer neurons did"e number of outputs. .

the hidden layer response is computed. The hidden layer, 17@ning is halted when the performance stops improv-

response is then fedforward to the output layer and the outﬂ)@ﬁ' The nel'i\,/vork IS thlgn tested using th% \{)alldatlon s_ampLe.
o is computed. In matrix notation this is expressed as 1€ Network’s generalization is measured by computing the
cumulative root mean square error (rmse) as

o = ['[vI'[wx]] (2
whereT', x, w, and v, are the nonlinear operatof(net), (4)
the input vector, the matrix of weights between the input and
hidden layer, and the matrix of weights between the hiddéor each individual modeled output usually denoting a single
and output layers, respectively. function of many variables.
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Fig. 3. Example layout of square spiral inductor with 1.5 turns. The other
o factors used in the experimental design are depictefl,as, 1" which are
Inltl.allze length, spacing, and width, respectively.
weights ls CRE
Normalize ;
decreasin . . .
data 9 The data set generated for this experimental design was
selected to represent a range of inductance normally realized
STEP 4 * STEP O v N in MMIC applications. Also, some of the inductors went
Submit training through resonance Wlthm the frequency range studied. The
sample Compute and factors used in the experiment were the spiral inductor design
Compute  [=& evaluate test parameters: width1§’), spacing §), length (.), and number
feedforward sample of turns (). These design factors, which are physically-
response response based, are representative of the parameters that can be easily
* varied by a circuit designer when laying out a MMIC. While
STEP 5 STEP 10 L
other parameters may be significant, those parameters are not
Compute Is model directly controllable by the circuit designer. For example,
cummulative substrate thickness is a significant parameter in microstrip

performance

response error acceptabl design. However, the substrate thickness is usually constant
(CRE) for a given technological fabrication process.
The physical layout of the inductors used in the experiments
Y is illustrated in Fig. 3. The inductors consisted of a square
spiral without mitered corners. Whild’, S, L, andT were
Fig. 2. Flow diagram of the MLPNN model development process. varied for each experiment, the linear separation between Port

1 and Port 2 was fixed at 600m. Air bridges were used

The number of neurons in the hidden layer are then changB?j connect Port 2 to the center of the inductor structure. The
and the entire process is repeated. The MLPNN exhibiting t%€d port separation was used to be compatible with a set of
lowest rmse is selected as the final model. The weights daRricated inductors, which required the fixed port separation
then stored in a file for future implementations. to permit automated on-wafer probing.

Fig. 2 is a flow diagram of the MLPNN model develop- The responses in the DoE were limited to a subset of the
ment process. The diagram summarizes the previous sectifuctor'ss-parameters for ease of experimentation. Since the
outlining the major steps required when creating an MLPNfgductors were reciprocaky; ands;» should be equal. Also,
model. The flow diagram is presented in the form of apince the inductors used in this paper were nearly lossless,

algorithm; however, human interaction is necessary at sevef¥ magnitudes of;; and sz, should be approximately equal
steps. to conserve energy. Therefore, the responses used in the DoE

consisted of the magnitude and anglesef, the magnitude
and angle ofs;, and the angle of.- at a specified frequency.
Ill. DOE AND EM SIMULATIONS This DoE yielded a MLPNN which is depicted in a block
In this research, a fractional-factorial experimental desigliagram in Fig. 4. The input parameters of the model are the
was used to generate the test and training data. The techniffequency and the inductor’s physical dimensions. The output
is analogous to traditional DoE’s [14]. Significant factorss the set of computestparameters for the respective inductor
were selected and varied according to predetermined levelsthe specified frequency point.
However, unlike traditional DoE, the results of the experiments A minimum of a three-level DoE was required since an
were not modeled using regression. Instead, the results wigrductor'ss-parameters are typically nonlinear functions of the
modeled using an MLPNN. A full factorial design was notayout. For example, the angle 8§, at 7 GHz as a function
used since some factor levels would have produced nonorthofine spacing is depicted in Fig. 5. The width, length, and
onal factors or would not have been physically realizable. number of turns were held constant at 25, 308, and 1.5,
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INPUT OUTPUT have required a length equal to 1pB. For this example, any
) length less than or equal to 1%8n would be excluded from
widh MAGSH . the DoOE. Hence, any combination of factor levels which would
spacing | Inductor |ANGSIL have yielded a nonorthogonal or nonphysical combination was
len excluded from the desired full factorial DoE producing a
= MLPNN MG 52 o fractional factorial DoE. This resulted in only 70 inductors
#uwms | Model |ancsal being simulated to generate the data set as opposed to 81 in
freq ANG $22 a full factorial DoE.
—» >

Sonnet'sem[15], a commercially available EM simulator,
was used to perform the EM simulations to generate the
Fig. 4. Block diagram of MLPNN model. A separate MLPNN model wagorrespondings-parameters for each inductor. The material
independently developed for each example. parameters (such as resistivity and permittivity) used in the
EM simulations were consistent with results obtained from

50 . . —— , inductors which were actually fabricated and characterized.
The simulations were used to generate a table-pérameters
49 r ] from 4 to 12 GHz in 1-GHz intervals for each inductor in the

DoE. This set ofs-parameters constituted the training set used
to develop the MLPNN inductor model.

Additional EM simulations were completed to generate
the test data used to characterize the MLPNNOQO's ability to

48 b

Angle of s22 (degrees)
3
T

4 F ] generalize. The most significant benefit of this approach will
be realized with the neural network’s ability to predict the
s r . s-parameters for inductors with parameter values not included

» . . . . in the training set. A comprehensive test set was created

s . s 2 »s ® to demonstrate the MLPNN inductor model’'s generalization
Transmission Line Spacing (1.m) capabilities. The test inductors were designed to exhibit several

! o of th | e . different variations of#’, S, and L, with values not included
Fig. 5. lllustrative example of the nonlinear behavior of a square spir A ;

inductor at 7 GHz. The width, length, and number of turns werg:2300 ﬁl' the training set. However, the.teSt mduc_:tprs !'Ised the sgme
um, and 1.5, respectively. number of turns as were u§ed W!th the trammg inductors (i.e.,

1.5, 2.5, and 3.5) to simplify laying out the inductors and to

limit the number of time-consuming EM simulations required

TABLE |
NOMINAL DESIGN VALUES USED IN FINAL DOE FOR TRAINING THE MLPNN to generate the teSt. set. -

More comprehensive training and test data could have been

Factor Level 1 Level2 Level 3 generated using a DoE with more than the minimal three levels
Width (um) 10 5 20 to better capture t_he inductor’'s nonlinear response. However,
Spacing (um) 0 % s for purposes of this paper, the use of only three levels was a

acing (um . . . . .

compromise among accuracy, precision, and the time required
Leneth tu 20 30 350 to complete the EM simulations.
Number of Turns 1.5 2.5 3.5

IV. EXPERIMENTS
respectively, while the spacing was varied over four levels.
Only three levels were used in the final DoE to minimiz

the number of EM simulations required to generate the d del the scattering parameters of the MMIC spiral induc-

set. However, four levels were used for each design fact[%rr. The first experiment was to createCaband MLPNN
in preliminary simulations to screen the parameter values fo, . ¢ ho frequency range of 4-8 GHz. The second
be used in the final .three Ieve'l DoE. The three values Weé?periment was to create af-band MLPNN model covering
selected such that a first-order fit could be made to the respogge frequency range of 8-12 GHz. In the third experiment a
locus. From the results depicted in Fig. 5, spacing values_ &mbinedCc—X -band MLPNN model was developed to cover
10, 20, and 25:m were selected. The values of each desigRe proader frequency range of 4-12 GHz. In each experiment
factor used in the final three-level DoE are given in Table Itne MLPNN had one hidden layer. The size of the hidden layer
The potential levels of the design factors were constraingghs determined experimentally by selecting the number of
further. To ensure that the factors were orthogonal, the geomgiiden nodes which resulted in the lowest training error, while
rical layout of the inductor was not minimized. Hence, thosgaintaining adequate generalization. Each model took less
levels which would have made any parameter dependent upRan 15 min to train on a 125-MHz HP 9000/770 workstation.
another were excluded from the DoE. For example, referringThe training set used for model development consisted of
to Fig. 3, a 1.5-turn inductor with a line width of 2@m and the 70 inductors from the initial DoE. This resulted in 350
a line spacing of 25:m must have a length of at least 155raining vectors for the”-band andX-band models and 630
1M to be physically realizable. Also, a minimal layout wouldor the combinedC—-X-band model. The difference in the

Three separate experiments were conducted to demonstrate
e feasibility of using the MLPNN approach to accurately
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TABLE I TABLE IV
TeST INDUCTOR DESIGN PARAMETERS VALUES CORRELATION COEFFICIENT BETWEEN THE EM-SIMULATED AND
- MLPNN-CoMPUTED OUTPUTS FOR THEC'—X -BAND TRAINING SET
Parameter Notation Value

Width (um) W 5.12,18,25 OUTPUT MAG s, ANG s, MAG sy, ANG sy, ANG sp)
Spacing (um) S 5,8,15,18,22,30 T 5986 9993 9981 9995 5996
Length (um) L 150,225,250,275,280,325,375 Tmse ~0004001 03681 0003656 03144 02514

TABLE 1lI

EM-simulated sample mean, afydis the MLPNN computed

DISTRIBUTION OF TEST INDUCTORS PARAMETER DEVIATIONS
sample mean.

Peramerer(s) in alning set | ParaELers) B g st | e o The correlation coefficient indicates how well the modeled
W v 1 values match the simulated values. A correlation coefficient

LA WL,S e near one indicates excellent predictive ability, while a coeffi-

s WL 5 cient near zero indicates little predictive ability. _Scatter plots of

NONE WS.L 6 the MLPNN-computed values versus the EM-simulated values

are created to visually illustrate the modeling accuracy. Perfect

accuracy would result in the data points forming a straight line
number of training vectors is due to the number of frequengyong the diagonal axis.
points modeled. The results of the?-band andX-band experiments were

Table 11 lists the design parameters and their values WthBry good with correlations between the MLPNN_Computed
were used in generating the test set. The values in bold italiggd EM-simulated values of greater than 0.98 for all modeled
were exclusive to the DoE range of each parameter. Thgarameters. However, due to space limitations, only the results
remaining values were all inclusive to the DoE ranges. Theym the C—X-band experiment are presented.
concepts of exclusive and inclusive test vectors are analogous
tp extrapolate_d and inte_rpolate_d_ values, respecfcivel_y, in tragli- C-X-Band MLPNN Model
tional regression analysis. Additionally, the distribution of the
number of turns for the test inductors was eight with 1.5 turns, T he performance of thé-band and¥ -band MLPNN mod-
22 with 2.5 turns, and eight with 3.5 turns. els were so promising and performed in such a similar manner
The parameter values listed in Table Il were combindfat it was decided to conduct a third experiment. For this

in such a way that the test set consisted of inductors wigPeriment, a single MLPNN inductor model was developed to
one, two, or three parameters with values not included in tREedict thes-parameter responses over the broader 4-12-GHz
training set. Table Il lists the distribution of these variationdréduency range. _ _ _
The table lists which parameter values were in the trainingl) Training Results:A single MLPNN, which had a hidden
set, which were not, and the number of inductors in the td@yer consisting of 32 neurons, was trained using 630 training
set which had that particular deviation from the training sefectors. The training set was a combination of the training
This test set design required the generation of an additiof&€tS from examples one and two. It contained the frequency
38 inductors. EM simulations were performed on these te¥td inductors-parameter responses relative to the 4-12-GHz

inductors, and the specific test vectors were formed in thaN9e. The correlation coefficient and rmse value for each
same manner used in the DoE of the training inductors. ~ OUtput parameter, taken across all training vectors, is given
in Table IV. The MLPNN computed outputs are very accurate

with near perfect correlation coefficients of one. Fig. 6(a)—(d)
shows scatter plots of EM-simulated and MLPNN-computed
. o values for magnitude (MAG}:, angle (ANG) s;1, MAG
Upon completion of training, the models developed werg, —and ANG s»;, respectively. These results are a further
tested and evaluated. This included the evaluation of thgjication of the MLPNN's capability to capture the complex
network’s ability to learn the mappings of the training datg,gnlinear inductor responses.
as well as its ability to generalize on the test set data. Eachrpe accuracy of theo—X-band model was expected to
test vector is used as input to the respective MLPNN. Th@crease due to the complexity of example three. However,
computed outputs represent the modeleparameters at the 35 can be seen from these illustrations and the associated
input frequency for each test inductor. For each individual and rmse values, the accuracy remained nearly constant
output the modeled values were compared to the EM simulaiggly actually increased for some parameters. This prediction
values by computing the rmse as given in (4). accuracy may be attributed to the expanded data set, in the
Also, to further quantify the MLPNN's modeling accuracyorm of additional frequency points, available to the MLPNN
the Pearson Product-Moment correlation coefficietdiven  qyring training. Training data is particularly important at the
in [16] as minimum and maximum frequency point. It was observed in
Z (i = F)(yi — 7) examples one and two that the errors associated with the
- ¢ ‘ (5) Minimum and maximum frequency pomts'(l.e., 4 and .8, 8
\/Z (z; — 7)? Z (; — )2 and 12, for examples one and two, respectively) were slightly
greater than those for the intermediate frequency points. In the
was calculated for each output. Where is the EM sim- (C-band andX-band models, 8 GHz was either a minimum or
ulated value,y; is the MLPNN computed valuet is the maximum frequency; however, in the combined training model

V. RESULTS




CREECHet al. ARTIFICIAL NEURAL NETWORKS 799

MAG S11 ANG S11
C-X-BAND Training Set oo C-X-BAND Training Set
r= 9086 N r=9993
rmse = .0004 | : g eof.fMmsei=.0368 ! S S > ]
0.8 = : : = i : ; :
il he
s D 40 e ]
=] >
Q o
€ 0.6 B £
Q (=]
& [&]
zZ =
Z 0.8k - z
o o
- -
> >
0.2
° . i i i i 60 I 1 i P i 1
0 0.2 0.4 0.6 0.8 1 -60 -40 -20 [ 20 40 60 80
EM Simulated EM Simulated
() (b)
MAG S21 ANG S21
, C-X-BAND Training Set C-X-BAND Training Set
r = 9981 ) ' ' T
rmse =1.0004 =034 i b b i i
0.8
el kel
jod @
5 )
(o o
£ 0.6 IS
[ o
[&] (@]
= Z _gol B
Z 0.4 pd
o a
pu | -
] S 100 [t .
0.2
120 ----o-
;O
o i H H -140 i I i i . i i
o 0.2 0.4 0.6 0.8 1 -140 -120 -100 -80 -60 -40 -20 0
EM Simulated EM Simulated
(©) (d)

Fig. 6. Scatter plots of the EM-simulated and MLPNN-computepiarameters for th€'—X-band training set. (2) MAG1;1. (b) ANG s1;1. (c) MAG
s21. (d) ANG s21.

TABLE V ranges. The rmse values in Table V are greatly affected by the
ﬁOLR;NE,L\]ATéON COEFF'SENT BETWEEN THCE, EX'\!"E?'MUL/;T ED ASNED exclusive test vectors. This is illustrated in Fig. 8(a) and (b).
- MPUTED TPUTS FOR THEC —X -BAND |EST T - .
OMPUTED LUTPUTS FO S These figures show the squared error for each sample in the
OUTPUT MAG s ANG s MAG s ANG s ANG s 2
; o873 [ 9ET | o896 | 9876 | 989 C-X-band test file for the output parameters, MAG and
rmse 001516 1907 001077 1848 1603 ANG s91, respectively. The largest errors are associated with

inductors which had physical design parameters outside the
DoE ranges. These results indicate that the MLPNN does not
the additional information about the inductor’'s response @medict the s-parameters of inductors with design parameter
either side of 8 GHz was available. This resulted in increasgdlues outside the ranges of the DoE as accurately as for
model performance at 8 GHz. those whose design parameters are inclusive to the DoE ranges.
2) Test ResultsThe combined test set for the—X-band The same trends were observed for thédand andX-band
consisted of 342 vectors. The correlation coefficients amdodeling results.
rmse values between the EM-simulated and MLPNN-output
responses are given in Table V. Fig. 7(a)—(d) shows scatter
plots of EM-simulated and MLPNN-computed values from the V1. DISCUSSION
test set for the MAGs;1, ANG 513, MAG s3;1, and ANG sy, The performance of the MLPNN varied with different
respectively. The MLPNN computed responses for the test $efining and test data. The results indicate that one can have
also resulted in high correlations. high confidence in the MLPNN’s predictive capability for
Comparing the scatter plots of Figs. 6 and 7, the groupirigsign parameters and frequency points inclusive to the DoE
of test data points about the diagonal axis, while very tightanges. This is particularly true for values which are at or very
is not as tight as that for the training data. However, furtheear the exact values used in the DoE, as illustrated by the
analysis revealed that the largest errors where associated wistining set scatter plots. However, the performance degraded
inductors whose design parameters where exclusive to the DIOE exclusive data sets. These results suggest that during the
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Fig. 7. Scatter plots of the EM-simulated and MLPNN-computegarameters for the®—X-band test set. (a) MAGs11. (b) ANG s11. (€) MAG
$927. (d) ANG 521.

design of a DoE to generate an MLPNN training set, the factanderestimated. This effort may only be practical for smaller
levels should extend beyond the intended range of use. Thesenmonly used structures. The parameter coverage of the
does not appear to be a degradation of MLPNN performangtuctures need to be properly envisaged up front.
for extended ranges, as revealed by the increased performancehe neural network approach used in this paper provides
of the combined-—=X -band MLPNN. an approach for avoiding these long simulation times when
The C-X-band MLPNN model was implemented as gvaluating small changes in the layout geometry. Once the
user-defined element into a popular circuit simulator. ThREWOTK is trained, the computation time of the modeled
enabled the MLPNN model to be used in the design, analys%!tpms is negligible and is orders of magnitude faster than

and optimization of microwave circuits. EM simulations ar@nY Single full-wave EM simulation.
usually too time consuming to interactively perform these
functions. The execution time for a full-wave EM simulation VIl. CONCLUSION

depends on the number of grld points used when meshmg]_his paper presented an approach in which a neural net-
the structure and the numerical tolerances. The numberv%rk was employed to accurately model MMIC passive el-
grid points greatly depends on the smallest critical geomettig,on characteristics. The MLPNN demonstrated the ability
feature. For example, the time required for the EM simulatiq ¢omputes-parameters nearly as accurate as those obtained
of a 2.5-turn spiral inductor on a g grid is about 3 min fom full-wave EM simulations. It also has demonstrated
per frequency point. However, the time required for a similahe capability to generalize and to predict accurate model
inductor on a 2«m grid is about 53 min per frequency pointparameters for data outside the training set. Once trained,
These simulation times clearly limit the practicality of EMihe computation time was negligible as compared to other
simulation in an interactive CAD environment. techniques such as full-wave EM simulation. This computa-
The extensive computational effort required to generatienal speed makes the network suitable for interactive CAD
the data used to train and test the MLPNN should not lagplications. Also, this approach demonstrates that the perfor-
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Fig. 8. Bar chart of the square error between simulated and MLPNN-compufetameters of each sample in tié-X-band test set. (a) MAG
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mance of passive elements at microwave and/or millimeter-
wave frequencies can be accurately predicted without the
need to develop costly model libraries. Although the thred!!
examples illustrated only inductor passive-element modeling,
the methodology may be extended, in principle, to othefz]
passive elements.

Recent literature has shown the emergence of compl%(]
BP training algorithms. In this training approach the error
calculations and the resulting weight corrections are based 4
the difference between two complex vectors. Using a complex
BP algorithm, the scalar errors are replaced with a true vect
error and the trained response of magnitude and phase of a
given s-parameter are more tightly coupled as a true vectoi6]
quantity. Further research is currently underway to utilize these
complex BP algorithms in the training of the MLPNN inductor 7
models presented here. 8]
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