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Abstract—A novel approach for achieving fast and accurate
computer-aided design (CAD) of microwave circuits is described.
The proposed approach enhances the ability to utilize electro-
magnetic (EM) analysis techniques in an interactive CAD envi-
ronment through the application of neurocomputing technology.
Specifically, a multilayer perceptron neural network (MLPNN)
is implemented to model monolithic microwave integrated circuit
(MMIC) passive elements using the element’s physical param-
eters. The strength of this approach is that only a minimum
number of EM simulations of these passive elements are required
to capture critical input–output relationships. The technique used
to describe the data set required for model development is
based on a statistical design of experiment (DoE) approach. Data
generated from EM simulations are used to train the MLPNN
which, once trained, is capable of modeling passive elements not
included in the training set. The results presented indicate that the
MLPNN can predict the s-parameters of these passive elements
to nearly the same degree of accuracy as that afforded by EM
simulation. The correlations between the MLPNN-computed and
EM-simulated results are greater than 0.98 for each modeled
parameter.

Index Terms—CAD, electromagnetic, microwave, neural net-
works.

I. INTRODUCTION

FOR MMIC DESIGN, the effectiveness of modern
computer-aided design (CAD) methods relies on accurate

models of active and passive circuit elements. As circuit
densities and operating frequencies increase, the accuracy
of conventional modeling techniques become questionable.
Typical circuit simulator supplied passive element models do
not accurately account for the parasitic and coupling effects
which occur at microwave/millimeter-wave frequencies [1].
To remedy this situation, libraries of passive components have
been developed by actually fabricating, testing, and storing the
results of hundreds of elements in a table [2]. This approach is
problematic since the libraries are process dependent, costly to
create, and limits the designer to a discrete set of components.
Table look-up techniques, while very fast, suffer from the large
memory requirements associated with the size of the table.

More recently, electromagnetic (EM) analysis tools have
become commercially available which accurately model pas-
sive structures into the millimeter-wave frequency range [3].
EM simulation effectively models passive element dispersion
and mutual coupling effects ignored by traditional circuit
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simulation tools. However, EM simulation methods, such as
those in [4], take tremendous computational efforts and are
not practical for interactive CAD.

In this paper, a methodology is described in which a
multilayer perceptron neural network (MLPNN) is imple-
mented to model monolithic integrated circuit (IC) passive
elements to nearly the same degree of accuracy as that afforded
by EM simulation. Experiments are discussed in which the
-parameters of microstrip square spiral inductors are modeled.

Inputs to the neural network model are the physical dimensions
of the inductor and the desired frequency. The outputs are
the -parameters for that inductor at the respective frequency
points. A statistical design of experiment (DoE) approach was
taken when generating the training and test data to ensure
adequate parameter coverage. Once trained, the computation
time of the modeled parameters is negligible, which makes
the MLPNN models suitable for interactive CAD applications.
Furthermore, the MLPNN’s ability to generalize may elim-
inate the need to always perform such time-consuming EM
simulations.

To demonstrate the application of this technique, three
experiments were conducted. In each experiment, an MLPNN
was trained to predict the-parameters of MMIC square spiral
inductors in 1-GHz steps. A -band (4–8 GHz), -band (8–12
GHz), and – band (4–12 GHz) MLPNN inductor model
was developed. In each experiment, the MLPNN model’s
performance remained nearly constant. Therefore, only the
results from the most complex experiment, the– -band
model, are provided. The-parameters used to train and test
the MLPNN were obtained from full-wave EM simulations.
Also, the MLPNN’s ability to generalize the-parameters
of inductors outside the training set of each example is
demonstrated.

In Section II, the MLPNN architecture and the MLPNN
modeling methodology is presented. Section III describes the
DoE approach for creating the comprehensive set of training
data for the MLPNN inductor models described in Section IV.
Finally, Section V presents the modeling results and Section
VI discusses some observations and issues associated with the
implementation of the MLPNN models.

II. M ULTILAYER PERCEPTRONNEURAL NETWORK

Neurocomputing technologies have emerged as powerful
modeling techniques. The class of neural network and/or
architecture selected for a particular model implementation is
dependent on the problem to be solved. The neural network
architecture used in this modeling effort is the MLPNN.
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Fig. 1. MLPNN feedforward architecture.

The MLPNN is trained in the supervised mode using the
error back-propagation (BP) algorithm. These networks can,
in theory, perform any complex nonlinear mappings [5], [6].
Relationships are mapped between input and output data
through an adaptive weight connection matrix [7].

Feedforward neural networks have recently been applied
in such areas as microwave circuit analysis and optimization
[8], microstrip circuit design [9], and device characterization
for very large scale integration (VLSI) simulation [10]. More
recently, the MLPNN has demonstrated, with good accuracy,
the ability to model GaAs MESFET process and device
characteristics in the forward direction [11] and to predict
MESFET parametric yield [12].

A. Architecture and MLPNN Considerations

A comprehensive presentation of the MLPNN is presented
in [13]; however, for convenience a brief discussion is pro-
vided here. The MLPNN has a multilayer feedforward ar-
chitecture, as shown in Fig. 1. It is composed of layers
of computing nodes termed neurons. Each neuron forms a
weighted sum of its inputs which is passed through a nonlinear
activation function. The nonlinear activation function used
in this research is the sigmoidal function, , and is
expressed as

(1)

where , is the weighted sum of the inputs anddetermines
the gain of the neuron.

The input vector feeds each of the hidden layer neurons and
the hidden layer response is computed. The hidden layer
response is then fedforward to the output layer and the output

is computed. In matrix notation this is expressed as

(2)

where , , , and , are the nonlinear operator ,
the input vector, the matrix of weights between the input and
hidden layer, and the matrix of weights between the hidden
and output layers, respectively.

B. MLPNN Model Development

1) Data Preprocessing and Training:Model development
starts with selecting, analyzing, and manipulating data. The
data to be mapped must be arranged into input–output pairs.
Also, the modeler must consider how to divide the data
into separate training and test files. The input–output pairs
in the training file are used for model development while
the test file is used for model validation. In this research a
fractional–factorial experimental design was used to generate
the test and training data files. This approach is described in
detail in Section III. The data in these files are normalized
by scaling them between the range of to 1. This helps
prevent the activation values from becoming too large and the
occurrence of neuron saturation during training.

The MLPNN models are developed using supervised train-
ing. The network learns the mappings directly from instances
of the input–output pairs in the training file. Training is
facilitated through the application of the BP training algorithm.
The BP algorithm, a gradient search technique, calculates the
weight adjustment using the generalized delta learning rule.
For each pair of input–output vectors in the training set, a
weight adjustment is calculated to reduce the error between
the MLPNN computed and the desired response. A thorough
discussion of the generalized delta learning rule and the error
BP training algorithm is presented in [13].

2) Evaluation/Validation: The goal, during training, is for
the network to learn the complex mapping present in the
training data and to produce accurate predictions or general-
izations. Generalization is the network’s ability to interpolate
or extrapolate with data not included in the training set.

In this work, the testing technique used to evaluate the
MLPNN’s generalization capability is called cross validation
[5]. Cross validation is a statistical technique in which the
training sample and a validation sample are selected from the
same population. The MLPNN is trained using the training
sample. When the training error stops decreasing by an ap-
preciable amount, the training is halted. The generalization
capability of the network is then tested using the validation
sample.

During training, the algorithm cycles through the data re-
peatedly, changing the weight values to improve performance.
After each pass through the training data, network performance
is measured by calculating the rms normalized error given by

(3)

where is the number of patterns in the training set and
is the number of outputs.

Training is halted when the performance stops improv-
ing. The network is then tested using the validation sample.
The network’s generalization is measured by computing the
cumulative root mean square error (rmse) as

rmse (4)

for each individual modeled output usually denoting a single
function of many variables.
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Fig. 2. Flow diagram of the MLPNN model development process.

The number of neurons in the hidden layer are then changed,
and the entire process is repeated. The MLPNN exhibiting the
lowest rmse is selected as the final model. The weights are
then stored in a file for future implementations.

Fig. 2 is a flow diagram of the MLPNN model develop-
ment process. The diagram summarizes the previous section,
outlining the major steps required when creating an MLPNN
model. The flow diagram is presented in the form of an
algorithm; however, human interaction is necessary at several
steps.

III. DoE AND EM SIMULATIONS

In this research, a fractional–factorial experimental design
was used to generate the test and training data. The technique
is analogous to traditional DoE’s [14]. Significant factors
were selected and varied according to predetermined levels.
However, unlike traditional DoE, the results of the experiments
were not modeled using regression. Instead, the results were
modeled using an MLPNN. A full factorial design was not
used since some factor levels would have produced nonorthog-
onal factors or would not have been physically realizable.

Fig. 3. Example layout of square spiral inductor with 1.5 turns. The other
factors used in the experimental design are depicted asL, S, W which are
length, spacing, and width, respectively.

The data set generated for this experimental design was
selected to represent a range of inductance normally realized
in MMIC applications. Also, some of the inductors went
through resonance within the frequency range studied. The
factors used in the experiment were the spiral inductor design
parameters: width ( ), spacing ( ), length ( ), and number
of turns ( ). These design factors, which are physically-
based, are representative of the parameters that can be easily
varied by a circuit designer when laying out a MMIC. While
other parameters may be significant, those parameters are not
directly controllable by the circuit designer. For example,
substrate thickness is a significant parameter in microstrip
design. However, the substrate thickness is usually constant
for a given technological fabrication process.

The physical layout of the inductors used in the experiments
is illustrated in Fig. 3. The inductors consisted of a square
spiral without mitered corners. While , , , and were
varied for each experiment, the linear separation between Port
1 and Port 2 was fixed at 600m. Air bridges were used
to connect Port 2 to the center of the inductor structure. The
fixed port separation was used to be compatible with a set of
fabricated inductors, which required the fixed port separation
to permit automated on-wafer probing.

The responses in the DoE were limited to a subset of the
inductor’s -parameters for ease of experimentation. Since the
inductors were reciprocal, and should be equal. Also,
since the inductors used in this paper were nearly lossless,
the magnitudes of and should be approximately equal
to conserve energy. Therefore, the responses used in the DoE
consisted of the magnitude and angle of , the magnitude
and angle of , and the angle of at a specified frequency.

This DoE yielded a MLPNN which is depicted in a block
diagram in Fig. 4. The input parameters of the model are the
frequency and the inductor’s physical dimensions. The output
is the set of computed-parameters for the respective inductor
at the specified frequency point.

A minimum of a three-level DoE was required since an
inductor’s -parameters are typically nonlinear functions of the
layout. For example, the angle of at 7 GHz as a function
of line spacing is depicted in Fig. 5. The width, length, and
number of turns were held constant at 25, 300m, and 1.5,
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Fig. 4. Block diagram of MLPNN model. A separate MLPNN model was
independently developed for each example.

Fig. 5. Illustrative example of the nonlinear behavior of a square spiral
inductor at 7 GHz. The width, length, and number of turns were 25�, 300
�m, and 1.5, respectively.

TABLE I
NOMINAL DESIGN VALUES USED IN FINAL DOE FOR TRAINING THE MLPNN

respectively, while the spacing was varied over four levels.
Only three levels were used in the final DoE to minimize
the number of EM simulations required to generate the data
set. However, four levels were used for each design factor
in preliminary simulations to screen the parameter values to
be used in the final three level DoE. The three values were
selected such that a first-order fit could be made to the response
locus. From the results depicted in Fig. 5, spacing values of
10, 20, and 25 m were selected. The values of each design
factor used in the final three-level DoE are given in Table I.

The potential levels of the design factors were constrained
further. To ensure that the factors were orthogonal, the geomet-
rical layout of the inductor was not minimized. Hence, those
levels which would have made any parameter dependent upon
another were excluded from the DoE. For example, referring
to Fig. 3, a 1.5-turn inductor with a line width of 20m and
a line spacing of 25 m must have a length of at least 155

m to be physically realizable. Also, a minimal layout would

have required a length equal to 155m. For this example, any
length less than or equal to 155m would be excluded from
the DoE. Hence, any combination of factor levels which would
have yielded a nonorthogonal or nonphysical combination was
excluded from the desired full factorial DoE producing a
fractional factorial DoE. This resulted in only 70 inductors
being simulated to generate the data set as opposed to 81 in
a full factorial DoE.

Sonnet’sem [15], a commercially available EM simulator,
was used to perform the EM simulations to generate the
corresponding -parameters for each inductor. The material
parameters (such as resistivity and permittivity) used in the
EM simulations were consistent with results obtained from
inductors which were actually fabricated and characterized.
The simulations were used to generate a table of-parameters
from 4 to 12 GHz in 1-GHz intervals for each inductor in the
DoE. This set of -parameters constituted the training set used
to develop the MLPNN inductor model.

Additional EM simulations were completed to generate
the test data used to characterize the MLPNNO’s ability to
generalize. The most significant benefit of this approach will
be realized with the neural network’s ability to predict the
-parameters for inductors with parameter values not included

in the training set. A comprehensive test set was created
to demonstrate the MLPNN inductor model’s generalization
capabilities. The test inductors were designed to exhibit several
different variations of , , and , with values not included
in the training set. However, the test inductors used the same
number of turns as were used with the training inductors (i.e.,
1.5, 2.5, and 3.5) to simplify laying out the inductors and to
limit the number of time-consuming EM simulations required
to generate the test set.

More comprehensive training and test data could have been
generated using a DoE with more than the minimal three levels
to better capture the inductor’s nonlinear response. However,
for purposes of this paper, the use of only three levels was a
compromise among accuracy, precision, and the time required
to complete the EM simulations.

IV. EXPERIMENTS

Three separate experiments were conducted to demonstrate
the feasibility of using the MLPNN approach to accurately
model the scattering parameters of the MMIC spiral induc-
tor. The first experiment was to create a-band MLPNN
model for the frequency range of 4–8 GHz. The second
experiment was to create an-band MLPNN model covering
the frequency range of 8–12 GHz. In the third experiment a
combined – -band MLPNN model was developed to cover
the broader frequency range of 4–12 GHz. In each experiment
the MLPNN had one hidden layer. The size of the hidden layer
was determined experimentally by selecting the number of
hidden nodes which resulted in the lowest training error, while
maintaining adequate generalization. Each model took less
than 15 min to train on a 125-MHz HP 9000/770 workstation.

The training set used for model development consisted of
the 70 inductors from the initial DoE. This resulted in 350
training vectors for the -band and -band models and 630
for the combined – -band model. The difference in the



798 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 5, MAY 1997

TABLE II
TEST INDUCTOR DESIGN PARAMETERS VALUES

TABLE III
DISTRIBUTION OF TEST INDUCTORS PARAMETER DEVIATIONS

number of training vectors is due to the number of frequency
points modeled.

Table II lists the design parameters and their values which
were used in generating the test set. The values in bold italics
were exclusive to the DoE range of each parameter. The
remaining values were all inclusive to the DoE ranges. The
concepts of exclusive and inclusive test vectors are analogous
to extrapolated and interpolated values, respectively, in tradi-
tional regression analysis. Additionally, the distribution of the
number of turns for the test inductors was eight with 1.5 turns,
22 with 2.5 turns, and eight with 3.5 turns.

The parameter values listed in Table II were combined
in such a way that the test set consisted of inductors with
one, two, or three parameters with values not included in the
training set. Table III lists the distribution of these variations.
The table lists which parameter values were in the training
set, which were not, and the number of inductors in the test
set which had that particular deviation from the training set.
This test set design required the generation of an additional
38 inductors. EM simulations were performed on these test
inductors, and the specific test vectors were formed in the
same manner used in the DoE of the training inductors.

V. RESULTS

Upon completion of training, the models developed were
tested and evaluated. This included the evaluation of the
network’s ability to learn the mappings of the training data,
as well as its ability to generalize on the test set data. Each
test vector is used as input to the respective MLPNN. The
computed outputs represent the modeled-parameters at the
input frequency for each test inductor. For each individual
output the modeled values were compared to the EM simulated
values by computing the rmse as given in (4).

Also, to further quantify the MLPNN’s modeling accuracy,
the Pearson Product–Moment correlation coefficient (), given
in [16] as

(5)

was calculated for each output. Where is the EM sim-
ulated value, is the MLPNN computed value, is the

TABLE IV
CORRELATION COEFFICIENT BETWEEN THE EM-SIMULATED AND

MLPNN-COMPUTED OUTPUTS FOR THEC–X-BAND TRAINING SET

EM-simulated sample mean, andis the MLPNN computed
sample mean.

The correlation coefficient indicates how well the modeled
values match the simulated values. A correlation coefficient
near one indicates excellent predictive ability, while a coeffi-
cient near zero indicates little predictive ability. Scatter plots of
the MLPNN-computed values versus the EM-simulated values
are created to visually illustrate the modeling accuracy. Perfect
accuracy would result in the data points forming a straight line
along the diagonal axis.

The results of the -band and -band experiments were
very good with correlations between the MLPNN-computed
and EM-simulated values of greater than 0.98 for all modeled
parameters. However, due to space limitations, only the results
from the – -band experiment are presented.

A. – -Band MLPNN Model

The performance of the -band and -band MLPNN mod-
els were so promising and performed in such a similar manner
that it was decided to conduct a third experiment. For this
experiment, a single MLPNN inductor model was developed to
predict the -parameter responses over the broader 4–12-GHz
frequency range.

1) Training Results:A single MLPNN, which had a hidden
layer consisting of 32 neurons, was trained using 630 training
vectors. The training set was a combination of the training
sets from examples one and two. It contained the frequency
and inductor -parameter responses relative to the 4–12-GHz
range. The correlation coefficient and rmse value for each
output parameter, taken across all training vectors, is given
in Table IV. The MLPNN computed outputs are very accurate
with near perfect correlation coefficients of one. Fig. 6(a)–(d)
shows scatter plots of EM-simulated and MLPNN-computed
values for magnitude (MAG) , angle (ANG) , MAG

, and ANG , respectively. These results are a further
indication of the MLPNN’s capability to capture the complex
nonlinear inductor responses.

The accuracy of the – -band model was expected to
decrease due to the complexity of example three. However,
as can be seen from these illustrations and the associated

and rmse values, the accuracy remained nearly constant
and actually increased for some parameters. This prediction
accuracy may be attributed to the expanded data set, in the
form of additional frequency points, available to the MLPNN
during training. Training data is particularly important at the
minimum and maximum frequency point. It was observed in
examples one and two that the errors associated with the
minimum and maximum frequency points (i.e., 4 and 8, 8
and 12, for examples one and two, respectively) were slightly
greater than those for the intermediate frequency points. In the

-band and -band models, 8 GHz was either a minimum or
maximum frequency; however, in the combined training model
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(a) (b)

(c) (d)

Fig. 6. Scatter plots of the EM-simulated and MLPNN-computeds-parameters for theC–X-band training set. (a) MAGs11. (b) ANG s11. (c) MAG
s21. (d) ANG s21.

TABLE V
CORRELATION COEFFICIENT BETWEEN THE EM-SIMULATED AND

MLPNN-COMPUTED OUTPUTS FOR THEC–X-BAND TEST SET

the additional information about the inductor’s response on
either side of 8 GHz was available. This resulted in increased
model performance at 8 GHz.

2) Test Results:The combined test set for the– -band
consisted of 342 vectors. The correlation coefficients and
rmse values between the EM-simulated and MLPNN-output
responses are given in Table V. Fig. 7(a)–(d) shows scatter
plots of EM-simulated and MLPNN-computed values from the
test set for the MAG , ANG , MAG , and ANG ,
respectively. The MLPNN computed responses for the test set
also resulted in high correlations.

Comparing the scatter plots of Figs. 6 and 7, the grouping
of test data points about the diagonal axis, while very tight,
is not as tight as that for the training data. However, further
analysis revealed that the largest errors where associated with
inductors whose design parameters where exclusive to the DoE

ranges. The rmse values in Table V are greatly affected by the
exclusive test vectors. This is illustrated in Fig. 8(a) and (b).
These figures show the squared error for each sample in the

– -band test file for the output parameters, MAG and
ANG , respectively. The largest errors are associated with
inductors which had physical design parameters outside the
DoE ranges. These results indicate that the MLPNN does not
predict the -parameters of inductors with design parameter
values outside the ranges of the DoE as accurately as for
those whose design parameters are inclusive to the DoE ranges.
The same trends were observed for the-band and -band
modeling results.

VI. DISCUSSION

The performance of the MLPNN varied with different
training and test data. The results indicate that one can have
high confidence in the MLPNN’s predictive capability for
design parameters and frequency points inclusive to the DoE
ranges. This is particularly true for values which are at or very
near the exact values used in the DoE, as illustrated by the
training set scatter plots. However, the performance degraded
for exclusive data sets. These results suggest that during the
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(a) (b)

(c) (d)

Fig. 7. Scatter plots of the EM-simulated and MLPNN-computeds-parameters for theC–X-band test set. (a) MAGs11. (b) ANG s11. (c) MAG
s21. (d) ANG s21.

design of a DoE to generate an MLPNN training set, the factor
levels should extend beyond the intended range of use. There
does not appear to be a degradation of MLPNN performance
for extended ranges, as revealed by the increased performance
of the combined – -band MLPNN.

The – -band MLPNN model was implemented as a
user-defined element into a popular circuit simulator. This
enabled the MLPNN model to be used in the design, analysis,
and optimization of microwave circuits. EM simulations are
usually too time consuming to interactively perform these
functions. The execution time for a full-wave EM simulation
depends on the number of grid points used when meshing
the structure and the numerical tolerances. The number of
grid points greatly depends on the smallest critical geometric
feature. For example, the time required for the EM simulation
of a 2.5-turn spiral inductor on a 5-m grid is about 3 min
per frequency point. However, the time required for a similar
inductor on a 2-m grid is about 53 min per frequency point.
These simulation times clearly limit the practicality of EM
simulation in an interactive CAD environment.

The extensive computational effort required to generate
the data used to train and test the MLPNN should not be

underestimated. This effort may only be practical for smaller
commonly used structures. The parameter coverage of the
structures need to be properly envisaged up front.

The neural network approach used in this paper provides
an approach for avoiding these long simulation times when
evaluating small changes in the layout geometry. Once the
network is trained, the computation time of the modeled
outputs is negligible and is orders of magnitude faster than
any single full-wave EM simulation.

VII. CONCLUSION

This paper presented an approach in which a neural net-
work was employed to accurately model MMIC passive el-
ement characteristics. The MLPNN demonstrated the ability
to compute -parameters nearly as accurate as those obtained
from full-wave EM simulations. It also has demonstrated
the capability to generalize and to predict accurate model
parameters for data outside the training set. Once trained,
the computation time was negligible as compared to other
techniques such as full-wave EM simulation. This computa-
tional speed makes the network suitable for interactive CAD
applications. Also, this approach demonstrates that the perfor-
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(a)

(b)

Fig. 8. Bar chart of the square error between simulated and MLPNN-computeds-parameters of each sample in theC–X-band test set. (a) MAG
s21. (b) ANG s21.

mance of passive elements at microwave and/or millimeter-
wave frequencies can be accurately predicted without the
need to develop costly model libraries. Although the three
examples illustrated only inductor passive-element modeling,
the methodology may be extended, in principle, to other
passive elements.

Recent literature has shown the emergence of complex
BP training algorithms. In this training approach the error
calculations and the resulting weight corrections are based on
the difference between two complex vectors. Using a complex
BP algorithm, the scalar errors are replaced with a true vector
error and the trained response of magnitude and phase of a
given -parameter are more tightly coupled as a true vector
quantity. Further research is currently underway to utilize these
complex BP algorithms in the training of the MLPNN inductor
models presented here.
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